Lesson 6: Sampling Analog Signals

ET 438b Sequential Control and Data Acquisition

Department of Technology

Learning Objectives

After this presentation you will be able to:

- Identify the steps in sampling an analog signal
- Indentify the frequency spectrum of a sampled signal
- Determine the minimum sampling rate of an analog signal

Determine if a sampled signal contains aliased signals.

Sampled Signals-Representation of Signal

Analog Signal - defined at every point of independent variable For most physical signals independent variable is time

Sampled Signal - Exists at point of measurement. Sampled at equally spaced time points, T_{s} called sampling time. ($1 / T_{s}$ $=f_{s}$), sampling frequency

Analog Example

$$
s(t)=5 \cdot \sin \left(2 \pi \cdot 250 \cdot t+60^{\circ}\right)+2 \cdot \cos \left(2 \pi \cdot 500 \cdot t+120^{\circ}\right)
$$

Sampled Example

$$
\mathrm{s}(\mathrm{n})=5 \cdot \sin \left(2 \pi \cdot 250 \cdot \mathrm{~T}_{\mathrm{s}} \cdot \mathrm{n}+60^{\circ}\right)+2 \cdot \cos \left(2 \pi \cdot 500 \cdot \mathrm{~T}_{\mathrm{s}} \cdot \mathrm{n}+120^{\circ}\right)
$$

Sampled Data Examples

Representation of analog signal

Representation of sampled analog signal

Sample and Hold Operation

Sample and Hold Circuit

Operating Modes
tracking = switch closed
hold= switch open
Sample and Hold Parameters
Acquisition Time - time from instant switch closes until V_{i} within defined \% of input. Determined by input time constant $\tau=\mathrm{R}_{\text {in }} \mathrm{C} \quad 5 \tau$ value $=99.3 \%$ of final value
decay rate - rate of discharge of C when circuit is in hold mode
aperture time - time it takes switch to open.

Sample and Hold Signals

Pulse generator closes switch and captures signal value

Analog and sampled signal
Amplitude Modulated $s(t)=p(t) \cdot a(t)$

Pulse generator output

Sample and Hold Output

Sample must be held while digital conversion takes place. Total time to digitize

$$
\begin{array}{ll}
\mathrm{t}_{\mathrm{c}}=\mathrm{t}_{\mathrm{a}}+\mathrm{t}_{\mathrm{d}} \quad \text { Where } \quad & \mathrm{t}_{\mathrm{c}}=\text { total conversion time } \\
& \mathrm{t}_{\mathrm{a}}=\text { total acquisition time } \\
& \mathrm{t}_{\mathrm{d}}=\text { total digital conversion time }
\end{array}
$$

Frequency Spectrum

Sampling is modulation. Shifts all signal frequency components and generates harmonics

Modulation produces sums and differences of carrier and information frequencies
$f_{h_{1}}=f_{c} \pm f_{11}$ for the $1^{s t}$ information frequency
$f_{h 2}=f_{c} \pm f_{11}$ for the $2^{\text {nd }}$ information frequency
$f_{h i}=f_{c} \pm f_{l i}$ for the i-th information frequency

Frequency Spectrum

Frequency Components

$$
\begin{aligned}
& f_{h_{1}}=f_{c} \pm f_{11}=1000 \mathrm{~Hz} \pm 50 \mathrm{~Hz}=1050 \mathrm{~Hz} \text { and } 950 \mathrm{~Hz} \\
& f_{h_{2}}=f_{c} \pm f_{l_{1}}=1000 \mathrm{~Hz} \pm 25 \mathrm{~Hz}=1025 \mathrm{~Hz} \text { and } 975 \mathrm{~Hz}
\end{aligned}
$$

Frequency Spectrum Plot

Frequency Spectrum

Complex signals usually have a frequency spectrum that is wider. Can be visualized with continuous f plot and found with an Fast Fourier Transform (FFT)

Frequency spectrum of input signals sample \& hold must be known to accurately reproduce original signal from samples

Nyquist Frequency and Minimum Sampling Rate

To accurately reproduce the analog input data with samples the sampling rate, f_{51} must be twice as high as the highest frequency expected in the input signal. (Two samples per period) This is known as the Nyquist frequency.

$$
f_{s(\text { min })}=2 f_{h}
$$

```
Where
\[
\begin{aligned}
& f_{h}=\text { the highest discernible } f \text { component in } \\
& \text { input signal } \\
& f_{s(\min )}=\text { minimum sampling } f
\end{aligned}
\]
```

Nyquist rate is the minimum frequency and requires an ideal pulse to reconstruct the original signal into an analog value

Sampled Signal Frequency Spectrum

Sampling with $f_{s}>2 f_{h}$

Sampling at less than $2 f_{h}$ causes aliasing and folding of sampled signals.

Nyquist Frequency and Aliasing

Only signals with frequencies below Nyquist frequency will be correctly reproduced

Example: Given the following signal, determine the minimum sampling rate (Nyquist frequency)

$$
\mathrm{s}(\mathrm{t})=2 \cdot \sin (2 \pi 100 \mathrm{t})+5 \cdot \sin (2 \pi 250 \mathrm{t})+1.5 \cos (2 \pi 500 \mathrm{t})+3 \cdot \sin (2 \pi 400 \mathrm{t})
$$

Find the highest frequency component: $100 \mathrm{~Hz}, 250 \mathrm{~Hz}, 500 \mathrm{~Hz}, 400 \mathrm{~Hz}$

$$
\begin{aligned}
& f_{h}=500 \mathrm{~Hz} \quad f_{s(\text { min })}=2 f_{h} \\
& \\
& f_{5(\text { min })}=2(500 \mathrm{~Hz})=1000 \mathrm{~Hz}
\end{aligned}
$$

Nyquist Frequency and Aliasing

Example: Given the following signal, determine the minimum sampling rate (Nyquist frequency)

$$
\mathrm{s}(\mathrm{t})=1.5 \cdot \sin (175 \pi \mathrm{t})+3 \cdot \sin (250 \pi \mathrm{t})+0.5 \cos (800 \pi \mathrm{t})+1.75 \cdot \sin (900 \pi \mathrm{t})
$$

Convert the radian frequency to frequency in Hz by dividing values by 2π

$$
\mathrm{f}_{1}=\frac{175 \pi}{2 \pi}=87.5 \mathrm{~Hz} \quad \mathrm{f}_{2}=\frac{250 \pi}{2 \pi}=125 \mathrm{~Hz}^{\mathrm{f}} \mathrm{f}_{3}=\frac{800 \pi}{2 \pi}=400 \mathrm{~Hz}_{4}=\frac{900 \pi}{2 \pi}=450 \mathrm{~Hz}
$$

Find the highest frequency component: 450 Hz

$$
f_{s(\min)}=2 f_{h}
$$

$$
f_{s(\min)}=2(450 \mathrm{~Hz})=900 \mathrm{~Hz}
$$

Aliased Frequencies

Sampling analog signal below $2 f_{h}$ produces false frequencies. Aliased frequencies determined by:

$$
\begin{aligned}
& \mathrm{f}_{\text {alias }}=\left|\mathrm{f}_{\mathrm{I}}-\mathrm{n} \cdot \mathrm{f}_{\mathrm{s}}\right| \\
& 0 \leq \mathrm{f}_{\text {alias }} \leq \mathrm{f}_{\text {nyquist }} \\
& \mathrm{f}_{\text {nyquist }}=\frac{\mathrm{f}_{\mathrm{s}}}{2}
\end{aligned}
$$

Where: $f_{l}=$ sampled information signal with $f_{1}>f_{\text {nyquist }}$
$f_{s}=$ sampling frequency (Hz)
$\mathrm{n}=$ sampling harmonic number
$f_{\text {alias }}=$ aliased frequency
$\mathrm{f}_{\text {nyquist }}=$ one-half sampling frequency

Samples/Period and Aliasing

Correct signal representation requires at least two samples/period

$$
\begin{aligned}
& N_{s}=\frac{f_{s}}{f_{I}}=\frac{T_{I}}{T_{s}} \\
& f_{s}>f_{I} \text { and } T_{I}>T_{s}
\end{aligned}
$$

Where $N_{s}=$ number input signal samples per period of sampling frequency
$\mathrm{f}_{\mathrm{s}}=$ sampling frequency (Hz)
$\mathrm{f}_{\mathrm{l}}=$ highest information signal frequency (Hz)
$\mathrm{T}_{\mathrm{s}}=$ sampling period, $1 / \mathrm{f}_{\mathrm{s}^{\prime}}$ (seconds)
$T_{1}=$ period information signal's highest frequency $\left(1 / f_{1}\right)$

Sampling/Aliasing Examples

Example 1: $A f_{s}=1000 \mathrm{~Hz}$ sampling frequency samples an information signal of $\mathrm{f}_{\mathrm{l}}=100 \mathrm{~Hz}$. Determine samples/period, the resulting recovered signal , and aliased frequencies if present

Determine the number of samples/ period

$$
\mathrm{N}_{\mathrm{s}}=\frac{1000 \mathrm{~Hz}}{100 \mathrm{~Hz}}=\frac{0.01 \mathrm{~S}}{0.001 \mathrm{~S}}=10 \text { samples } / \text { period }
$$

$$
\mathrm{f}_{\text {nyquist }}=\frac{\mathrm{f}_{\mathrm{s}}}{2}=\frac{1000 \mathrm{~Hz}}{2}=500 \mathrm{~Hz}
$$

Signals below 500 Hz
reproduced without aliasing

View the frequency spectrum using FFT of samples

Sampling/Aliasing Examples

Frequency Spectrum

Sampling/Aliasing Examples

Example 2: $A f_{s}=60 \mathrm{~Hz}$ sampling frequency samples an information signal of $\mathrm{f}_{\mathrm{l}}=100 \mathrm{~Hz}$. Determine samples/period, the resulting recovered signal ,and aliased frequencies if present

Determine the number of samples/ period

$$
\mathrm{N}_{\mathrm{s}}=\frac{60 \mathrm{~Hz}}{100 \mathrm{~Hz}}=\frac{0.01 \mathrm{~S}}{0.001666 \mathrm{~S}}=0.6 \mathrm{samples} / \text { period }
$$

Aliased signals will occur due to low sampling rate

$$
\mathrm{f}_{\text {nyquist }}=\frac{\mathrm{f}_{\mathrm{s}}}{2}=\frac{60 \mathrm{~Hz}}{2}=30 \mathrm{~Hz}
$$

Signals below 30 Hz
reproduced without aliasing

Now compute the aliased frequency for $1^{\text {st }}$ sampling harmonic

Sampling/Aliasing Examples

Alias frequencies for $1^{\text {st }}$ harmonic of sampling $f(n=1)$

$$
\begin{array}{ll}
\mathrm{f}_{\text {alias }}=\left|\mathrm{f}_{\mathrm{I}}-\mathrm{n} \cdot \mathrm{f}_{\mathrm{s}}\right| & \mathrm{f}_{\text {alias }}=|100 \mathrm{~Hz}-1 \cdot 60 \mathrm{~Hz}|=40 \mathrm{~Hz} \\
0 \leq \mathrm{f}_{\text {alias }} \leq \mathrm{f}_{\text {nyquist }} & \mathrm{f}_{\text {nyquist }}=\frac{60 \mathrm{~Hz}}{2}=30 \mathrm{~Hz} \\
\mathrm{f}_{\text {nyquist }}=\frac{\mathrm{f}_{\mathrm{s}}}{2} & 0 \leq \mathrm{f}_{\text {alis }} \leq 30 \mathrm{~Hz}
\end{array}
$$

$$
\text { The } \mathrm{f}_{\text {alias }} \text { is outside range } 0-30 \mathrm{~Hz} \text {, }(40 \mathrm{~Hz}
$$ $>30 \mathrm{~Hz}$) No recovered signal

Find alias frequencies of $2^{\text {nd }}$ sampling harmonic $f(n=2)$

$$
\begin{aligned}
& \mathrm{f}_{\text {alias }}=|100 \mathrm{~Hz}-2 \cdot 60 \mathrm{~Hz}|=20 \mathrm{~Hz} \\
& \text { The } \mathrm{f}_{\text {alias }} \text { in range } 0-30 \mathrm{~Hz}, 20 \mathrm{~Hz} \\
& \text { recovered signal }
\end{aligned}
$$

Sampling/Aliasing Examples

Frequency Spectrum

Sampling/Aliasing Examples

Example 3: $A f_{s}=80 \mathrm{~Hz}$ sampling frequency samples an information signal of $\mathrm{f}_{\mathrm{l}}=100 \mathrm{~Hz}$. Determine samples/period, the resulting recovered signal ,and aliased frequencies if present

Determine the number of samples/ period

$$
\mathrm{N}_{\mathrm{s}}=\frac{80 \mathrm{~Hz}}{100 \mathrm{~Hz}}=\frac{0.01 \mathrm{~S}}{0.00125 \mathrm{~S}}=0.8 \text { samples } / \text { period }
$$

Aliased signals will occur due to low sampling rate

$$
\mathrm{f}_{\text {nyquist }}=\frac{\mathrm{f}_{\mathrm{s}}}{2}=\frac{80 \mathrm{~Hz}}{2}=40 \mathrm{~Hz}
$$

Sampling/Aliasing Examples

Alias frequencies for $1^{\text {st }}$ harmonic of sampling $f(n=1)$

$$
\begin{array}{ll}
\mathrm{f}_{\text {alias }}=\left|\mathrm{f}_{\mathrm{I}}-\mathrm{n} \cdot \mathrm{f}_{\mathrm{s}}\right| & \mathrm{f}_{\text {alias }}=|100 \mathrm{~Hz}-1 \cdot 80 \mathrm{~Hz}|=20 \mathrm{~Hz} \\
0 \leq \mathrm{f}_{\text {alias }} \leq \mathrm{f}_{\text {nyquist }} & \mathrm{f}_{\text {nyquisis }}=\frac{60 \mathrm{~Hz}}{2}=40 \mathrm{~Hz} \\
\mathrm{f}_{\text {nyquist }}=\frac{\mathrm{f}_{\mathrm{s}}}{2} & 0 \leq \mathrm{f}_{\text {alias }} \leq 40 \mathrm{~Hz}
\end{array}
$$

$$
\begin{aligned}
& \text { The } f_{\text {alias }} \text { is inside range } 0-40 \mathrm{~Hz} \\
& 20 \mathrm{~Hz} \text { recovered signal }
\end{aligned}
$$

Find alias frequencies of $2^{\text {nd }}$ sampling harmonic $f(n=2)$

$$
\begin{aligned}
& \mathrm{f}_{\text {alias }}=|100 \mathrm{~Hz}-2 \cdot 80 \mathrm{~Hz}|=60 \mathrm{~Hz} \\
& \text { The } \mathrm{f}_{\text {alias }} \text { outside range } 0-40 \mathrm{~Hz}, \mathrm{No} \\
& \text { recovered signal }
\end{aligned}
$$

Sampling/Aliasing Examples

Frequency Spectrum

Sampling/Aliasing Examples

Example 4: $A f_{s}=100 \mathrm{~Hz}$ sampling frequency samples an information signal of $f_{l}=100 \mathrm{~Hz}$. Determine samples/period, the resulting recovered signal , and aliased frequencies if present

Determine the number of samples/ period

$$
\mathrm{N}_{\mathrm{s}}=\frac{100 \mathrm{~Hz}}{100 \mathrm{~Hz}}=\frac{0.01 \mathrm{~S}}{0.01 \mathrm{~S}}=1 \text { samples } / \text { period }
$$

Aliased signals will occur due to low sampling rate

$$
\mathrm{f}_{\text {nyquist }}=\frac{\mathrm{f}_{\mathrm{s}}}{2}=\frac{100 \mathrm{~Hz}}{2}=50 \mathrm{~Hz}
$$

Signals below 50 Hz reproduced without aliasing

Sampling and Aliasing Examples

Alias frequencies for $1^{\text {st }}$ harmonic of sampling $f(n=1)$

$$
\begin{array}{ll}
\mathrm{f}_{\text {alias }}=\left|\mathrm{f}_{\mathrm{I}}-\mathrm{n} \cdot \mathrm{f}_{\mathrm{s}}\right| & \mathrm{f}_{\text {alias }}=|100 \mathrm{~Hz}-1 \cdot 100 \mathrm{~Hz}|=0 \mathrm{~Hz} \\
0 \leq \mathrm{f}_{\text {alias }} \leq \mathrm{f}_{\text {nyquist }} & \mathrm{f}_{\text {nyquist }}=\frac{100 \mathrm{~Hz}}{2}=50 \mathrm{~Hz} \\
\mathrm{f}_{\text {nyquits }}=\frac{\mathrm{f}_{\mathrm{s}}}{2} & 0 \leq \mathrm{f}_{\text {atias }} \leq 50 \mathrm{~Hz}
\end{array}
$$

The $f_{\text {alias }}$ is inside range $0-50 \mathrm{~Hz}$. o Hz indicates that the recovered signal is a dc level

View time and frequency plots of this example. o Hz is dc. Level depends on phase shift of information signal relative to sampling signal

Sampling and Aliasing Examples

Time plot

Sampling and Aliasing Examples

Previous examples all demonstrate under-sampling. $f_{s} \leq f_{l}$ Folding occurs when $f_{s}>f_{1}$ but less that $f_{\text {nyquist }}$

Example 5: $A f_{s}=125 \mathrm{~Hz}$ sampling frequency samples an information signal of $\mathrm{f}_{\mathrm{l}}=100 \mathrm{~Hz}$. Determine samples/period, the resulting recovered signal , and aliased frequencies if present

Determine the number of samples/ period

$$
\mathrm{N}_{\mathrm{s}}=\frac{125 \mathrm{~Hz}}{100 \mathrm{~Hz}}=\frac{0.01 \mathrm{~S}}{0.008 \mathrm{~S}}=1.25 \text { samples } / \text { period }
$$

Aliased signals will occur due to low sampling rate
$\mathrm{f}_{\text {nyquist }}=\frac{\mathrm{f}_{\mathrm{s}}}{2}=\frac{125 \mathrm{~Hz}}{2}=62.5 \mathrm{~Hz}$

Signals below 62.5 Hz reproduced without aliasing

Sampling and Aliasing Examples

Alias frequencies for $1^{\text {st }}$ harmonic of sampling $f(n=1)$

$$
\begin{array}{ll}
\mathrm{f}_{\text {alias }}=\left|\mathrm{f}_{\mathrm{I}}-\mathrm{n} \cdot \mathrm{f}_{\mathrm{s}}\right| & \mathrm{f}_{\text {alias }}=|100 \mathrm{~Hz}-1 \cdot 125 \mathrm{~Hz}|=25 \mathrm{~Hz} \\
0 \leq \mathrm{f}_{\text {alias }} \leq \mathrm{f}_{\text {nyquist }} & \mathrm{f}_{\text {nyquist }}=\frac{125 \mathrm{~Hz}}{2}=62.5 \mathrm{~Hz} \\
\mathrm{f}_{\text {nyquist }}=\frac{\mathrm{f}_{\mathrm{s}}}{2} & 0 \leq \mathrm{f}_{\text {aliks }} \leq 62.5 \mathrm{~Hz}
\end{array}
$$

$$
\begin{aligned}
& \text { The } f_{\text {alias }} \text { is inside range } 0-62.5 \mathrm{~Hz} \text {. A } 25 \\
& \mathrm{~Hz} \text { signal is reconstructed }
\end{aligned}
$$

Find alias frequencies of $2^{\text {nd }}$ sampling harmonic $f(n=2)$

$$
\begin{aligned}
& \mathrm{f}_{\text {alias }}=|100 \mathrm{~Hz}-2 \cdot 125 \mathrm{~Hz}|=150 \mathrm{~Hz} \\
& \begin{array}{l}
\text { The } \\
\text { fecovered signal at this frequency }
\end{array} \\
& \text { rectide range o- } 62.5 \mathrm{~Hz} \text {, No }
\end{aligned}
$$

Sampling and Aliasing Examples

Frequency Spectrum

End Lesson 6: Sampling Analog Signals

ET 438b Sequential Control and Data Acquisition
Department of Technology

